Models for Massive Stellar Populations with Rotation
نویسندگان
چکیده
We present and discuss evolutionary synthesis models for massive stellar populations generated with the Starburst99 code in combination with a new set of stellar evolution models accounting for rotation. The new stellar evolution models were compiled from several data releases of the Geneva group and cover heavy-element abundances ranging from twice solar to one fifth solar. The evolution models were computed for rotation velocities on the zero-age main-sequence of 0 and 300 km s and with the latest revision of stellar mass-loss rates. Since the mass coverage is incomplete, in particular at non-solar chemical composition, our parameter study is still preliminary and must be viewed as exploratory. Stellar population properties computed with Starburst99 and the new evolution models show some marked differences in comparison with models obtained using earlier tracks. Since individual stars now tend to be more luminous and bluer when on the blue side of the Hertzsprung-Russell diagram, the populations mirror this trend. For instance, increases by factors of two or more are found for the light-to-mass ratios at ultraviolet to near-infrared wavelengths, as well as for the output of hydrogen ionizing photons. If these results are confirmed once the evolution models have matured, recalibrations of certain star-formation and initial mass function indicators will be required. Subject headings: stars: evolution — galaxies: stellar content — galaxies: individual(SMC, LMC, M 31,
منابع مشابه
Evaluation of New MOND Interpolating Function with Rotation Curves of Galaxies
The rotation curves of a sample of 46 low- and high-surface brightness galaxies are considered in the context of Milgrom's modi_ed dynamics (MOND) to test a new interpolating function proposed by Zhao et al. (2010) [1] and compare with the results of simple interpolating function. The predicted rotation curves are calculated from the total baryonic matter based on the B-band surface photometry,...
متن کاملRevision of Star-Formation Measures
Rotation plays a major role in the evolution of massive stars. A revised grid of stellar evolutionary tracks accounting for rotation has recently been released by the Geneva group and implemented into the Starburst99 evolutionary synthesis code. Massive stars are predicted to be hotter and more luminous than previously thought, and the spectral energy distributions of young populations mirror t...
متن کاملPopulations of massive stars in galaxies, implications for the stellar evolution theory
After a brief review of the observational evidences indicating how the populations of Be stars, red/blue supergiants, Wolf-Rayet stars vary as a function of metallicity, we discuss the implications of these observed trend for our understanding of the massive star evolution. We show how the inclusion of the effects of rotation in stellar models improves significantly the correspondence between t...
متن کاملStellar evolution with rotation X: Wolf-Rayet star populations at solar metallicity
We examine the properties of Wolf–Rayet (WR) stars predicted by models of rotating stars taking account of the new mass loss rates for O–type stars and WR stars (Vink et al. 2000, 2001; Nugis & Lamers 2000) and of the wind anisotropies induced by rotation. We find that the rotation velocities v of WR stars are modest, i.e. about 50 km s, not very dependant on the initial v and masses. For the m...
متن کاملSpectral Synthesis of Massive Stars in Clusters
Stellar clusters are thought to be the simplest stellar systems and the closest observational counterparts to theoretical models for single stellar populations. Progress in our understanding of the atmospheres and evolution of massive stars has led to generally reliable synthesis models. The future release of new evolution models with rotation, however, will require non-trivial updates to previ...
متن کامل